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Abstract
In this thesis, an algorithm is developed which, for a given 2D frontal face input image, generates
a 3D model of the face in the form of a point cloud and subsequently derives the face depth im-
age from this model. Besides, if the camera calibration information is given, the algorithm could
provide accurate rotation and translation of the face concerning the camera; otherwise, relative
rotation and translation of one face image to another is obtainable. To do so, it starts by driving
a deformable shape model from the 3D face landmarks (83 points) and a deformable appearance
model from 2D face images in BU3DFE dataset. Then, by altering shape, appearance and pose
parameters iteratively, it fits the deformable model to a 2D face input image and obtains its opti-
mal model. In fitting process, the idea in 2.5D AAM algorithm with some modifications is used.
In the modified version which is one of this thesis novelties, a cost function is defined, and ini-
tial shape parameters are estimated, resulting enhancement of AAM performance for unseen data,
much fewer iterations than former approaches and robustness to added distortions to the initial
shape parameters. From the output of the fitting process, which is a sparse 3D point cloud and via
subdividing and 3D affine transform, the depth image is extracted. In this regard, to project 3D
points to 2D image plane, the proposed approach uses perspective projection in case of knowing
camera calibration information or, otherwise uses a weak perspective model with changing scale,
which is another novelty of this thesis. Different properties of the proposed algorithm are eval-
uated. It is shown that the proposed algorithm is faster, since it converges with less than eight
iterations, compared to 20 for other approaches. Its robustness to added distortions to the initial
shape parameters, with any standard deviation, in the fitting process is shown. The mean and the
standard deviation of the depth image error for the proposed algorithm and the GEM approach are
compared. It is verified that the proposed algorithm has less reconstruction error.

Brief Review to Thesis
First of all, a Deformable 3D landmark and Appearance image (mean appearance) is built from the
dataset which can be deformed by p and λ parameters respectively. (fig1)

After then proposed method tries to estimate p(3D landmark or shape parameter), q(pose param-
eter), λ(appearance parameter) parameters minimizing following cost function in order to fit the
model to the face image:

argminpqλ

∑
xp∈S0p

[A0(xp) +

m∑
i=1

λiAi(xp)− I(W (xp, p, q))]
2

In above cost function A0 is mean appearance and Ai is ith of m most significant eigen vector of
appearance. I(W (xp, p, q)) is projected warped image of input face image depending on shape
and pose parameters. Block diagram of fitting process is shown in fig3. After fitting process ter-
mination, 2D & 3D landmark is generated for the face image. Fitting process for two sample face
image is shown in fig2.
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Fig1 mean 3D landmark & mean appearance

Fig2 fitting process for two sample face image

By knowing camera calibration data(intrinsic parameters) our proposed method calculates relative
rotation and translation of face to the camera in addition to 2D & 3D landmark results. Block
diagram of the fitting process by knowing camera calibration parameters is shown in fig4.
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Fig3 Block diagram of fitting process
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Fig4 Block diagram of fitting process by knowing Camera Calibration Parameters
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Fig5 Some fitting process results by knowing intrinsic camera parameters
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Some Fitting process results by knowing intrinsic camera parameters is shown in fig5; as you can
see there, after fitting process, relative rotation and translation of face to the camera is given, plus
2D & 3D landmark. In next step our proposed approach generates a dense point cloud of face
and face depth image consequently from sparse 3D landmark obtained in the previous step; let see
how we could do this. In order to do that at first, a mean depth image is constructed by applying
1GPA to all dataset’s depth image via sparse 3D landmarks (fig6). Now we have mean depth with
a mean sparse 3D landmark on one side and sparse 3D landmark obtained from previous step with
no depth on another side. So we want to generate Depth image on the second side.

Fig6Mean depth image

Fig7 Triangulation and Subdivision

1Generalized Procrustes Analysis
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Fig8 Block diagram of subdivision and proposed 3D piecewiseaffine transform which convert
sparse 3D landmarks to dense 3D point cloud

To achieve this goal we proposed an approach which applies subdivision and proposed 3D piece-
wise affine transform recursively to sparse 3D landmarks yield to convert sparse 3D landmark to
dense 3D landmark and consequently depth image. In the first step, we triangulated 3D landmarks
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and selected the x and y coordinates of every triangle center as a new point with unknown z(fig7).
Our goal is to find z and do it recursively to increase 3D points number. We assumed that every
3rd coordinate of every point(z) in each triangle could be calculated by a linear combination of its
x, y coordinates and the 3rd coordinate of the corresponding point in the mean depth image. So we
have three unknown which can be calculated with three equation generated by three vertices of
the triangle with known z. Block diagram of the proposed approach is given in fig8. Fig9 illustrates
every iteration of the process applying to a surprised 3D landmark as an example.

Fig9 Subdivision and proposed 3D piecewise affine iterations in multiple view

After then we create depth image from dense 3D point cloud generated in previous step(fig10) and
finally mapped texture on it. Fig12 shows some 3D reconstruction with texture mapping. table1
shows that our proposed approach has less 3D reconstruction error comparison to 2GEM that it is
reasonable because GEM stretches a depth image according to the 2D landmark on the face image,

2Generic Elastic Model
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but our proposed approach calculates every point’s z in the new depth image.
In the following we extracted 33DLBP feature(fig11) from obtained depth image and showed that
this feature yield better result in face recognition on partially blurred face image than 4LBP and
5LDN; because in these images texture is partially disrupted and these features can not discriminate
faces from each other as so well as 3DLPB. Table2 , table3 and table4 are confusion matrix of
3DLBP, LBP and LDN respectively on seven face expression; so we can see that 3DLBP yields
better performance in comparison to two other texture features on partially blurred face images.

Fig10 Depth image creation from dense 3D point cloud

Fig11 3DLBP feature

33D Local Binary Pattern
4Local Binary Pattern
5Linear Discriminant Analysis
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Fig12 Some 3D reconstruction with texture mapping

GEM Our Proposed Approach
Anger 10.03 ±7.82 7.06 ±5.93
Disgust 15.90 ±9.16 8.83 ±7.38
Fear 13.78 ±8.03 8.46 ±7.03

Happy 16.92 ±10.86 9.44 ±7.92
Neutral 10.15 ±4.62 6.20 ±4.82
Sadness 12.33 ±7.31 7.06 8.13±7.10
Surprise 18.64 ±12.19 10.79 ±9.26
mean 13.96 ± 8.57 8.41 ± 7.062

Table1Mean and standard deviation of 3D reconstruction error for reconstructed depth image
by GEM & Our proposed approach

Ne(%) An(%) Di(%) Fe(%) Ha(%) Sa(%) Su(%)
Neutral 81 4 2 2 1 10 0
Angry 8 58 10 4 1 19 0
Disgust 1 9 75 7 3 3 2
Fear 4 6 9 67 6 6 2

Happiness 0 0 1 9 89 0 1
Sadness 11 12 9 9 1 58 0
Surprise 3 0 4 1 2 0 90

Average(%) 74
Table2 Confusion matrix and face recognition rate in case of using 3DLBP as feature extractor
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Ne(%) An(%) Di(%) Fe(%) Ha(%) Sa(%) Su(%)
Neutral 74 8 2 7 1 5 3
Angry 8 51 12 12 2 15 0
Disgust 2 10 70 9 2 4 3
Fear 4 12 8 56 10 6 4

Happiness 1 1 1 11 86 0 0
Sadness 12 23 1 6 2 54 2
Surprise 3 0 2 3 2 3 87

Average(%) 68
Table3 Confusion matrix and face recognition rate in case of using LBP as feature extractor

Ne(%) An(%) Di(%) Fe(%) Ha(%) Sa(%) Su(%)
Neutral 28 16 9 9 11 9 18
Angry 16 25 17 13 7 17 5
Disgust 11 12 24 13 13 10 17
Fear 10 8 14 21 25 12 10

Happiness 15 3 7 23 40 5 7
Sadness 17 20 13 15 4 22 9
Surprise 9 1 4 10 5 8 63

Average(%) 32
Table4 Confusion matrix and face recognition rate in case of using LDN as feature extractor
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